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In this paper, a novel cognitive system model is established based on formal concept
analysis to exactly describe human cognitive processes. Two new operators, extent–intent
and intent–extent, are introduced between an object and its attributes. By analyzing
the necessity and sufficient relations between the object and some of its attributes, the
information granule concept is investigated in human cognitive processes. Furthermore,
theories of transforming arbitrary information granule into necessary, sufficient, sufficient
and necessary information granules are addressed carefully. Algorithm of the transforma-
tion is constructed, by which we can provide an efficient approach to the conversion among
information granules. To interpret and help understand the theories and algorithm, an
experimental computing program is designed and two cases is employed as case study.
Results of the small scale case are calculated by the method presented in this paper. The
large-scale case is calculated by the experimental computing program and validated by the
proposed algorithm. The considered framework can provide a novel convenient tool for
artificial intelligence researches.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Currently, every type of system is becoming increasingly complex with the rapid growth of automated production. Tra-
ditional manual labor has been replaced with high-performance computers. Human cognition is becoming the bottleneck
of further productive force development. Artificial intelligence has been a very hot topic regarding how to improve the
efficiency and quality of human thinking. Generally, there exist two research methods in artificial intelligence, “top-down”
and “bottom-up” [25]. Although artificial intelligence has made great achievements in logic simulation and each method
possesses its own unique advantages, such simulation methods represent very basic and low-level cognitive systems. Thus,
a system that combines the strength of the “top-down” and “bottom-up” strategies is required.

Recently, there have been many advances in the study for formal concept analysis and rough set with granular computing.
Ma and Zhang [18] presented a general framework for concept lattice and established generalized concept systems based on
set-theoretic operators are established. Li et al. [13] studied the issues of approximate concept construction, rule acquisition
and knowledge reduction in incomplete decision contexts. What’s more, Shen and Zhang [15] explored the relationship
between contexts, closure spaces, and complete lattices. Scott Dick et al. [5] established a novel architecture for a granular
neural network and Zhang and Miao [43] investigated two basic double-quantitative rough set models of precision and
grade and their investigation using granular computing. What’s more, Andrzej Bargiela [1,2] researched the roots of granular
computing and expanded the theory of granular computing for human-centered information processing. And Yao [33–37]
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discussed integrative levels of granularity and the theory of granular computing. Many excellent achievements can be seen
in Ref. [42].

Information granules have played a significant role in human cognitive processes. Information granules refer to pieces,
classes, and groups into which complex information is divided in accordance with the characteristics and processes of
human understanding and decision-making. Such a process is termed “information granulation.” Zadeh first proposed and
discussed the issue of fuzzy information granulation [38] in 1979. Since then, the basic idea of information granulation [19]
has been applied to many fields, such as the theory of rough sets [21,22], fuzzy sets [39], and evidence theories [24]. In
1985, Hobbs proposed the concept of granularity [10], and Zadeh first explored the concept of granular computing [38]
between 1996 and 1997. Currently, granular computing serves an important role in soft computing, knowledge discovery,
and data mining, providing excellent results [12,14].

German mathematician R. Wille proposed the theory of formal concept analysis (FCA) [28] in 1982. This theory is based
on mathematical expressions of the formal concept and is a branch of applied mathematics [6]. The application of math-
ematical methods to manage conceptual data and knowledge using formal concept analysis theory is necessary. A concept
lattice is an ordered hierarchy that is defined by a binary relationship between the objects and attributes in a data set.
Concepts are a reflection of cognitive processes, which are driven by concepts. Most of the research on the concept lattice
concentrates on topics, such as concept lattice construction [3,4,7,9,11,17], concept lattice pruning [20], rule acquisition, the
relationship between the concept lattice and rough set [23,32], and applications [16,26,30,31]. Formal concept analysis is
becoming a powerful tool for data analyses and knowledge processing and has successfully been applied to many fields
[8,27,40,41], such as knowledge engineering, information searching, and software engineering.

From granular computing theories and formal concept analysis theories, the cognitive process is a process of transforma-
tion between the object and its easily identifiable attributes. Humans begin to recognize objects from the unknown. If an
object is of interest, it will possess a fuzzy and rough impression on initial perception. The uncertainty impression is com-
posed from some of the major sufficient or necessary attributes. The object can then be further understood after learning
its attributes, and the attributes can be further judged after understanding the object. Finally, the sufficient and necessary
attributes of the object can be obtained, grasping the object completely.

To describe human cognitive processes, this paper will establish a novel model of a cognitive system based on formal
concept analysis and discuss information granules in the cognitive system.

This paper is organized as follows. Some preliminary concepts of FCA that are required in our work are briefly reviewed
in Section 2. In Section 3, we propose two operators between an object and its attributes, extent–intent and intent–extent
operators, and a novel model of a cognitive system is then constructed based on FCA. In Section 4, concepts of information
granules, such as necessary information, sufficient information, and necessary and sufficient information granules, are pre-
sented. Moreover, the relationship between an object and its attributes is discussed in view of information granules in this
cognitive system. In the next section, we suggest how to transform arbitrary information granule into necessary information
granules, sufficient information granules and sufficient and necessary information granules. Furthermore, we design the pro-
gram to transform arbitrary information granule and investigate an interesting case analysis about how to make decisions
in Section 6. Finally, we conclude our contribution with a summary and an outlook for further research.

2. Formal concept analysis

Generally, the data analyzed by the concept lattice are represented in a formal context, which is defined as follows.

Definition 1. (See [6].) A triple (U , A, I) is a formal context if U and A are sets and I ⊆ U × A is a binary relation between
U and A, where U = {x1, x2, . . . , xn} and A = {a1,a2, . . . ,am} are called the object and attribute sets, respectively. Each xi
(i � n) and a j ( j � m) is an object and attribute, respectively.

In a formal context (U , A, I), if (x,a) ∈ I , also written as xIa, then the object x has the attribute a, or a is possessed
by the object x. In this paper, (x,a) ∈ I is denoted by 1 and (x,a) /∈ I is denoted by 0. Thus, the formal context can be
represented using a table with only 0 and 1.

With respect to the formal context (U , A, I), a pair of dual operators can be defined as follows. For X ⊆ U and B ⊆ A,

(1) X∗ = {a | a ∈ A, ∀x ∈ X, xIa},
(2) B∗ = {x | x ∈ U , ∀a ∈ B, xIa},

where X∗ is the set of attributes shared by all objects in X and B∗ is the set of objects that possesses all attributes in B .
We write {x}∗ as x∗ for any x ∈ U and {a}∗ as a∗ for any a ∈ A. If for any x ∈ U , x∗ �= ∅ and x∗ �= A, and for any a ∈ A, a∗ �= ∅
and a∗ �= U , then the formal context (U , A, I) is canonical. Without this generalization, the formal contexts are all canonical
contexts in this paper.

Definition 2. (See [6].) Let (U , A, I) be a formal context. A pair (X, B) is called a formal concept, or concept, if and only if
X∗ = B and B∗ = X , where X is the extension and B is the intension of (X, B).

Example 1. Table 1 shows a formal context (U , A, I) in which U = {x1, x2, x3, x4} and A = {a,b, c,d}.
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Table 1
A formal context (U , A, I).

U a b c d

x1 1 0 1 1
x2 1 1 0 0
x3 0 0 1 0
x4 1 1 0 0

From this context, we can write the following concepts:

(U ,∅ ),
({x1, x2, x4}, {a}),
({x2, x4}, {a,b}),
({x1}, {a, c,d}),
({x1, x3}, {c}

)
,

(∅, A).

For a formal context (U , A, I), the following significant properties hold.

Proposition 1. (See [6].) Let (U , A, I) be a formal context, for any X1, X2, X ⊆ U , B1, B2, B ⊆ A, the seven properties hold as follows:

(1) X1 ⊆ X2 ⇒ X∗
2 ⊆ X∗

1 , B1 ⊆ B2 ⇒ B∗
2 ⊆ B∗

1;
(2) X ⊆ X∗∗ , B ⊆ B∗∗;
(3) X∗ = X∗∗∗ , B∗ = B∗∗∗;
(4) X ⊆ B∗ ⇔ B ⊆ X∗;
(5) (X1 ∪ X2)

∗ = X∗
1 ∩ X∗

2 , (B1 ∪ B2)
∗ = B∗

1 ∩ B∗
2;

(6) (X1 ∩ X2)
∗ ⊇ X∗

1 ∪ X∗
2 , (B1 ∩ B2)

∗ ⊇ B∗
1 ∪ B∗

2;
(7) (X∗∗, X∗) and (B∗, B∗∗) are concepts.

3. Cognitive system based on formal concept analysis

Intrinsically, a cognitive process is the transformation process between an object and its attributes. In other words, men
judge and recognize any object by using its transformation. When an object is consistent with its attributes, the laws of the
object can be grasped. Thus, some of the necessary or sufficient information about the object can be gradually obtained.
The object is constantly judged using this information until an understanding of the necessary and sufficient attributes of
the object is gained.

In the next section, we will propose the operators between an object and its attributes to construct cognitive systems
based on formal concepts.

Let L be a lattice, where 0L and 1L are zero and the unit element, respectively.

Definition 3. Let L1 and L2 be two complete lattices, for any a1,a2 ∈ L1. L : L1 → L2 is an extent–intent operator if L
satisfies the following:

(1) L(0L1 ) = 1L2 , L(1L1 ) = 0L2 ,
(2) L(a1 ∨ a2) =L(a1) ∧L(a2).

For any a ∈ L1, we say that L(a) is an intent element of a and elements of L2 are intent elements.
Moreover, for any b1,b2 ∈ L2, H : L2 → L1 is an intent–extent operator if H satisfies the following:

(1′) H(0L2 ) = 1L1 , H(1L2 ) = 0L1 ,
(2′) H(b1 ∨ b2) =H(b1) ∧H(b2).

For any b ∈ L2, we say that H(b) is extent element of b and elements of L1 are extent elements.

Definition 4. A quadruplet (L1, L2,L,H) is a cognitive system if the above two operators, L and H, further satisfy

H ◦L(a) � a
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and

L ◦H(b) � b,

where H ◦L(a) and L ◦H(b) represent HL(a) and LH(b), respectively.

From the above definition, we can find that two operators, L and H, characterize an object and its attributes in a
cognitive process.

Theorem 1. For any a1,a2 ∈ L1 and b1,b2 ∈ L2 , a cognitive system (L1, L2,L,H) has the following properties:

(1) If a1 � a2 , then L(a2) �L(a1);
(2) If b1 � b2 , then H(b2) �H(b1);
(3) L(a1) ∨L(a2) �L(a1 ∧ a2);
(4) H(b1) ∨H(b2) �H(b1 ∧ b2);
(5) b �L(a) ⇔ a �H(b), L(a) � b ⇔H(b) � a;
(6) For any a ∈ L1 , L ◦H ◦L(a) =L(a);
(7) For any b ∈ L2 , H ◦L ◦H(b) =H(b).

Proof. (1), (2), (3), (4) and (5) can be proven by Definition 3 directly.
(6) By (1) and H ◦L(a) � a, we can obtain L(a) �L ◦H ◦L(a). In contrast, from L ◦H(b) � b, if we take b =L(a), then

we can obtain L ◦H ◦L(a) �L(a).
Thus, L ◦H ◦L(a) =L(a).
(7) It can be proven in a manner similar to (6).
The proof is completed. �
From the above proof and FCA, we can obtain the following important results.

Theorem 2. Let (U , A, I) be a formal context, where U = {x1, x2, . . . , xn} and A = {a1,a2, . . . ,am}. If L1 = P (U ) and L2 = P (A) are
denoted, then the operators (∗,∗) defined by Definition 1(1), (2) are extent–intent and intent–extent operators of (U , A, I), respec-
tively.

Proof. Theorem 2 can be obtained using Proposition 1 and Definition 3. �
From the above discussion, the formal context can be viewed as the relationship between the objects and attributes in a

cognitive process. Some concepts that have been identified have been realized. Concepts that have not yet been recognized
are not formed. To gain more knowledge about the cognitive process, we must find two extension and intension operators
in accordance with Definition 3. In fact, these operators are “∗” in a formal context.

4. Information granules in cognitive systems

In the previous section, we established two intension and extension operators between the objects and attributes. When
using these two operators, the transformation process of an object and its attributes in the cognitive process can be under-
stood. When the object is consistent with its attributes, we can grasp the nature or the laws of the object. Humans begin
to understand things from the unknown. Thus, sufficient or necessary attributes of the unknown objects can be obtained
using the two operators.

In this section, we will discuss the relationship between the object and their attributes in the cognitive process based
on information granules using the two operators.

To reflect on the granule description of the cognitive system, the pair (a,b) denotes the information granule, where a is
an object set and b is an attribute set.

Definition 5. Let L1 = P (U ) and L2 = P (A) be two complete lattices and L, H be extent–intent and intent–extent operators,
respectively (i.e., (L1, L2,L,H) is a cognitive system). For any a ∈ L1 and b ∈ L2, denote

G1 = {
(a,b)

∣∣ b � L(a), a �H(b)
}
, G2 = {

(a,b)
∣∣ L(a) � b, H(b) � a

}
.

If (a,b) ∈ G1, then (a,b) is a necessary information granule of the cognitive system and b is a necessary attribute of
object a (Fig. 1). Simultaneously, G1 is a necessary information granule set of the cognitive system.

If (a,b) ∈ G2, then (a,b) is a sufficient information granule of the cognitive system and b is a sufficient attribute of object
a (Fig. 2). Simultaneously, G2 is a sufficient information granule set of the cognitive system.

If (a,b) ∈ G1 ∩ G2, that is, (a,b), satisfy b = L(a) and a = H(b), then (a,b) is a sufficient and necessary information
granule of the cognitive system and b is a sufficient and necessary attribute of a.
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Fig. 1. (a,b) is a necessary information granule, and b is a
necessary attribute of object a.

Fig. 2. (a,b) is a sufficient information granule, and b is a
sufficient attribute of object a.

If (a,b) ∈ G1 ∪G2, then (a,b) is an information granule of the cognitive system and G1 ∪G2 is an information granule set
of the cognitive system.

If (a,b) /∈ G1 ∪G2, then (a,b) is an inconsistent information granule of the cognitive system, in which the facts shown in
Figs. 1 and 2 are not generally true.

From the above definition, the necessary and sufficient information granules are concepts of the cognitive system. In fact,
these concepts are also targets in human cognitive processes. In the real world, we first learn the necessary or sufficient
information granules. We then gradually seek for the necessary and sufficient information granules, namely, the concept,
based on the already known information granules.

Theorem 3. Let (U , A, I) be a formal context, where U = {x1, x2, . . . , xn} and A = {a1,a2, . . . ,am}. If L1 = P (U ) and L2 = P (A) are
denoted, the following hold for any X ∈ L1 and B ∈ L2:

(1) If X∗ ⊇ B and B∗ ⊇ X, then B is a necessary attribute of X ;
(2) If X∗ ⊆ B and B∗ ⊆ X, then B is a sufficient attribute of X.

Proof. Theorem 3 can be achieved directly using Definition 5 and Theorem 2. �
From the above discussion, Definition 5 and Theorem 3 have shown that we seek to understand sufficient or necessary

attributes when the concept may not be precise in cognitive processes.

Theorem 4. Let (L1, L2,L,H) be a cognitive system and G1 be a necessary information granule set of the cognitive system. If “∧” and
“∨” are defined operators of G1 , and

(a1,b1) ∧ (a2,b2) = (
a1 ∧ a2,L ◦H(b1 ∨ b2)

)
,

(a1,b1) ∨ (a2,b2) = (H ◦L(a1 ∨ a2),b1 ∧ b2
)
,

(G1,�) is then closed with respect to operators “∧” and “∨”.

Proof. Assume (a1,b1), (a2,b2) ∈ G1, then

b1 � L(a1), b2 � L(a2),

a1 �H(b1), a2 �H(b2)

and

a1 ∧ a2 �H(b1) ∧H(b2) =H(b1 ∨ b2) =H ◦L ◦H(b1 ∨ b2).

Moreover, using Theorem 1 we find

L ◦H(b1 ∨ b2) = L(H(b1) ∧H(b2)
)
� L(a1 ∧ a2).

Thus, (a1,b1) ∧ (a2,b2) is a necessary information granule; that is, (a1,b1) ∧ (a2,b2) ∈ G1.
(a1,b1) ∨ (a2,b2) ∈ G1 can be proven similarly.
The theorem is proven. �

Theorem 5. Let (L1, L2,L,H) be a cognitive system and G2 be a sufficient information granule set of the cognitive system. If “∧” and
“∨” are defined operators of G2 , and

(a1,b1) ∧ (a2,b2) = (
a1 ∧ a2,L ◦H(b1 ∨ b2)

)
,

(a1,b1) ∨ (a2,b2) = (H ◦L(a1 ∨ a2),b1 ∧ b2
)
,

(G2,�) is then closed with respect to operators “∧” and “∨”.
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Proof. Let (a1,b1), (a2,b2) ∈ G2, then

L(a1) � b1, L(a2) � b2,

H(b1) � a1, H(b2) � a2

and

H ◦L ◦H(b1 ∨ b2) =H(b1 ∨ b2) =H(b1) ∧H(b2) � a1 ∧ a2.

Moreover, using Theorem 1, we find

L(a1 ∧ a2) � L(H(b1) ∧H(b2)
) = L ◦H(b1 ∨ b2).

Thus, (a1,b1) ∧ (a2,b2) is a sufficient information granule; that is, (a1,b1) ∧ (a2,b2) ∈ G2.
(a1,b1) ∨ (a2,b2) ∈ G2 can be proven similarly.
The theorem is proven. �
Because � is a quasi-order relationship in (G1,�) and (G2,�), these relationships are not lattices with respect to opera-

tors “∧” and “∨”, termed “quasi-lattices”.

5. Transformation of information granules

As previously described, we began to learn from the unknown. In other words, sufficient and necessary information
granules do not exist at the beginning of cognitive systems. We will present approaches to transform useless information
into very useful information granules in the following. That’s to say, we can transform general information granules into
necessary information granules, sufficient information granules, sufficient and necessary information granules.

Case 1. The method to transform the general information granules into necessary information granules can be represented
in the following.

Theorem 6. Let (L1, L2,L,H) be a cognitive system and G1 be a necessary information granule set. If a ∈ L1,b ∈ L2 , then

(1) (a ∧H(b),b ∨L(a)) ∈ G1;
(2) (a ∨H(b),b ∧L(a)) ∈ G1;
(3) (H(b),b ∧L(a)) ∈ G1;
(4) (a ∧H(b),L(a)) ∈ G1;
(5) (H ◦L(a),b ∧L(a)) ∈ G1;
(6) (a ∧H(b),L ◦H(b)) ∈ G1 .

Proof. (1) Because (L1, L2,L,H) is a cognitive system, from Theorem 1 and Definition 5 we have

L(
a ∧H(b)

)
� L(a) ∨L(H(b)

)
� L(a) ∨ b

and

H(
b ∨L(a)

) =H(b) ∧H(L(a)
)
� a ∧H(b).

Thus, (a ∧H(b),b ∨L(a)) ∈ G1.
Furthermore, we can obtain (a ∧H(b),b ∨L(a)) ∈ G1.
(2) It can be proven in a manner similar to (1).
(3) Because (L1, L2,L,H) is a cognitive system, from Theorem 1 and Definition 5 we have

L ◦H(b) � b � L(a) ∧ b

and

H(
b ∧L(a)

)
�H ◦L ◦H(b) =H(b).

Thus, (H(b),b ∧L(a)) ∈ G1.
Moreover, we have (H(b),b ∧L(a)) ∈ G1.
(4) It can be proven in a manner similar to (3).
(5) Because (L1, L2,L,H) is a cognitive system, from Theorem 1 and Definition 5 we have L◦H◦L(a) =L(a) �L(a)∧b;

and H(L(a) ∧ b) �H ◦L(a) ∨H(b) �H ◦L(a). Thus, (H ◦L(a),b ∧L(a)) ∈ G1.
Therefore, (H ◦L(a),b ∧L(a)) ∈ G1.
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Fig. 3. (a ∧H(b),b ∨L(a)) is a necessary information granule. Fig. 4. (a ∨H(b),b ∧L(a)) is a necessary information granule.

Fig. 5. (H(b),b ∧L(a)) is a necessary information granule. Fig. 6. (a ∧H(b),L(a)) is a necessary information granule.

Fig. 7. (H ◦L(a),b ∧L(a)) is a necessary information granule. Fig. 8. (a ∧H(b),L ◦H(b)) is a necessary information granule.

Fig. 9. (H ◦L(a),b ∨L(a)) is a sufficient information granule. Fig. 10. (a ∨H(b),L ◦ bH(b)) is a sufficient information granule.

(6) It can be proven in a manner similar to (5). �
This theorem can be understood easily by using Figs. 3, 4, 5, 6, 7, 8.

Case 2. The method to transform the general information granules into sufficient information granules can be represented
in the following.

Theorem 7. Let (L1, L2,L,H) be a cognitive system and G2 be a sufficient information granule set. If a ∈ L1 , b ∈ L2 , then

(1) (H ◦L(a),b ∨L(a)) ∈ G2;
(2) (a ∨H(b),L ◦H(b)) ∈ G2 .

Proof. (1) Because (L1, L2,L,H) is a cognitive system, from Theorem 1 and Definition 5 we have

L ◦H ◦L(a) = L(a) � L(a) ∨ b,

and

H(L(a) ∧ b
) =H ◦L(a) ∧H(b) �H ◦L(a).

Thus, (H ◦L(a),b ∨L(a)) ∈ G2.
Furthermore, we achieve (H ◦L(a),b ∨L(a)) ∈ G2.
(2) It can be proven in a manner similar to (1). �
This theorem can be illustrated by Figs. 9, 10.
From the above, we can transform useless information into very useful information granules in the cognitive system.

If we do not receive the necessary and sufficient information granules in the cognitive system, we cannot fully recognize
information granules given.

To fully learn information granules, we will show how to transform necessary, sufficient information granules into suffi-
cient and necessary information granules respectively.
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Case 3. The method to transform the necessary information granules into sufficient and necessary information granules can
be represented in the following.

Theorem 8. Let (L1, L2,L,H) be a cognitive system and G1 be a necessary information granule set. If (a1,b1) ∈ G1 ,

(1) (a1 ∨H(b1),L(a1 ∨H(b1))) ∈ G1 ∩ G2;
(2) (H(b1 ∨L(a1)),b1 ∨L(a1)) ∈ G1 ∩ G2 .

Proof. (1) By (a1,b1) ∈ G1, we have a1 �H(b1) and b1 �L(a1).
Thus,

a1 ∨H(b1) =H(b1), L(
a1 ∨H(b1)

) = L ◦H(b1).

Thus, from the above discussion and Theorem 1, we have the following:

L(
a1 ∨H(b1)

) = L ◦H(b1) = L(
a1 ∨H(b1)

)
,

H(L(
a1 ∨H(b1)

)) =H ◦L ◦H(b1) =H(b1) = a1 ∨H(b1).

Hence, (a1 ∨H(b1),L(a1 ∨H(b1))) is a sufficient and necessary information granule.
(2) This item can be obtained similarly. �

Case 4. The method to transform the sufficient information granules into sufficient and necessary information granules can
be represented in the following.

Theorem 9. Let (L1, L2,L,H) be a cognitive system and G2 be a sufficient information granule set. If (a1,b1) ∈ G2 ,

(1) (a1 ∧H(b1),L(a1 ∧H(b1))) ∈ G1 ∩ G2;
(2) (H(b1 ∧L(a1)),b1 ∧L(a1)) ∈ G1 ∩ G2 .

Proof. (1) By (a1,b1) ∈ G2, we have L(a1) � b1 and H(b1) � a1.
Thus,

a1 ∧H(b1) =H(b1), L(
a1 ∧H(b1)

) = L ◦H(b1).

Thus, from the above discussion and Theorem 1, we have the following:

L(
a1 ∧H(b1)

) = L ◦H(b1),

H(L(
a1 ∧H(b1)

)) =H ◦L ◦H(b1) =H(b1).

Hence, (a1 ∧H(b1),L(a1 ∧H(b1))) is a sufficient and necessary information granule.
(2) This item can be obtained similarly. �
From the above ways, we can come to a conclusion as follows: there are six methods to transform the general informa-

tion granules into necessary information granules; there are two methods to transform necessary information granules into
sufficient and necessary information granules (Fig. 11); there are two methods to transform the general information gran-
ules into sufficient information granules; there are two methods to transform sufficient information granules into sufficient
and necessary information granules (Fig. 12). So we can obtain 16 methods to transform the general information granules
into sufficient and necessary information granules.

Theorem 10. Let (U , A, I) be a formal context where U = {x1, x2, x3, . . . , xn}, A = {a1,a2, . . . ,am}, X ⊆ U , and B ⊆ A. If B ⊆ X∗
and X ⊆ B∗ , (X ′ = X ∪ B∗, B ′ = X ′ ∗) or (X ′ = B ′ ∗, B ′ = B ∪ X∗) or (B ′ = X ′ ∗, X ′ = X ∩ B∗) or (X ′ = B ′ ∗, B ′ = B ∩ X∗), then
(X ′, B ′) is a formal concept.

Proof. It can be proven easily. �
Example 2. (Continued from Example 1.) If we take a0 = {x1, x4}, b0 = {a,b} from Example 1, then (a0,b0) is obviously
an inconsistent granule. Thus, we can grasp the necessary information granules ({x2, x4},a) and ({x4},a); the sufficient
information granule ({x1, x2, x4},ab). Moreover, we can obtain the sufficient and necessary information granule ({x2, x4},ab).
Simultaneously, we can first transform the inconsistent granule (a0,b0) into a sufficient information granule ({x1, x2, x4},ab),
then obtain the sufficient and necessary information granules ({x2, x4},ab) and ({x1, x2, x4},a).
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Fig. 11. The transformation of information granules.

Fig. 12. The transformation of information granules.

6. Algorithm and case study of transformation

According to the above theory proposed, in the next, we can convert an arbitrary information granule into necessary,
sufficient, sufficient and necessary information granules by using the following algorithm.

Algorithm. The algorithm of transformation of information granules in cognitive system is described as follows:

Input: An information table and arbitrary information granule in cognitive system.
Output: Necessary information granules, sufficient information granules, sufficient and necessary information granules.

Step 1: Load the data of information table, do initialized setting and compute number of objects and attributes.
Step 2: Input the arbitrary information granule (a1,b1) and select randomly one of the two channels.
Step 3: Necessary information granule channel is selected. If the information granule isn’t necessary, then skip to step 5.

Otherwise, turn to step 7.
Step 4: Sufficient information granule channel is selected. If the information granule isn’t sufficient, then skip to step 6.

Otherwise, go to step 8.
Step 5: Transform the general information granule (a1,b1) into necessary information granules (a1

2,b1
2), (a

2
2,b2

2), . . . , (a
m
2 ,bm

2 )

by choosing one of six methods in Case 1.
Step 6: Transform the general information granule into sufficient information granules (a1

3,b1
3), (a

2
3,b2

3), . . . , (a
n
3,bn

3) by
choosing one of two methods in Case 2.

Step 7: Transform the necessary information granules into sufficient and necessary information granules (a1
4,b1

4), (a
2
4,b2

4),

. . . , (ar
4,br

4) by choosing the methods in Case 3.
Step 8: Transform the sufficient information granules into sufficient and necessary information granules (a1

5,b1
5), (a

2
5,b2

5),

. . . , (as
5,bs

5) by choosing the methods in Case 4.
Step 9: Output necessary information granules, sufficient information granules, sufficient and necessary information gran-

ules. And finish the algorithm.

Experimental computing program can be designed and carried out so as to apply the algorithm studied more directly
and practically in this paper. Let Ni (i = 1,2,3,4,5,6), Si (i = 1,2), Ci (i = 1,2), Di (i = 1,2) stand for the methods in
Cases 1, 2, 3, 4, respectively. The main process of the program will be introduced by the flow chart (Fig. 13) in this section
and cases are employed to verify the program.
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Fig. 13. The program flow chart of the transformation of information granules.

This experimental computing program is running on a personal computer with the following hardware and software.

Name Model Parameters

CPU Intel i5-2410 2.3 GHz
Memory Samsung DDR3 SDRAM 2 × 2 GB, 1333 MHz
Hard disk West Data 640 GB
System Windows 7 32 bit
Platform C++ 6.0

Example 3. A formal context about situations of developing countries is presented in Table 2. The formal context is denoted
by (U , A, I), where A is an attribute set. There are 110 objects which represent the kinds of developing countries. The data
are from Ref. [29]. The interpretations of the attributes will be listed as follows:

a1 – Group of 77
a2 – Non-aligned
a3 – LLDC (Least Less Developed Country)
a4 – MSAC (Most Seriously Affected Country)
a5 – OPEC (Organization of Petroleum Exporting Countries)
a6 – ACP (African, Caribbean, and Pacific Associables)

If the United Nations plan to grant loans for developing countries in order to help them with economic development.
Now, there are 128 developing countries in Table 2. The United Nations need fully consider political and economic environ-
ment for the distribution of equity. That’s to say, the United Nations must take attribute set A into account when they make
decisions which countries to choose. The method proposed in this paper can be used to select the candidate countries.

Suppose (X0, B0) is the initial information granule, where X0 and B0 are the countries and attributes voted by delegation.
But the result (X0, B0) may induce the condition that the countries selected don’t satisfy the given attributes and the coun-
tries satisfying the given attributes are not selected. Now let X0 = {x1, x11, x14, x35, x47, x52, x59, x78, x84, x92, x87, x95, x106},
B0 = {a1,a2,a3,a6}.

If the funding is limited, the United Nations only select the countries which must satisfy the given condition attribute.
Now the necessary information granule is a good choice. The information granule (X0, B0) ∈ G1 is necessary information
because of B0 �L(X0) through the above methods. That’s to say, these countries X0 satisfy and precede the given condition
attributes B0.
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Table 2
(U , A, I) about situations of developing countries.

Countries Group of 77 Non-aligned LLDC MSAC OPEC ACP

x1 Afghanistan 1 1 1 1 0 0
x2 Algeria 1 1 0 0 1 0
x3 Angola 1 1 0 0 0 1
x4 Antigua and Barbuda 1 0 0 0 0 1
x5 Argentina 1 0 0 0 0 0
x6 Bahamas 1 0 0 0 0 1
x7 Bahrain 1 1 0 0 0 0
x8 Bangladesh 1 1 1 1 0 0
x9 Barbados 1 1 0 0 0 1
x10 Belize 1 1 0 0 0 1
x11 Benin 1 1 1 1 0 1
x12 Bhutan 1 1 1 0 0 0
x13 Bolivia 1 1 0 0 0 0
x14 Botswana 1 1 1 0 0 1
x15 Brazil 1 0 0 0 0 0
x16 Brunei 0 0 0 0 0 0
x17 Burkina Faso 1 1 1 1 0 1
x18 Burundi 1 1 1 1 0 1
x19 Cambodia 1 1 0 1 0 0
x20 Cameroon 1 1 0 1 0 1
x21 Cape Verde 1 1 1 1 0 1
x22 Central African Rep. 1 1 1 1 0 1
x23 Chad 1 1 1 1 0 1
x24 Chile 1 0 0 0 0 0
x25 China 0 0 0 0 0 0
x26 Colombia 1 1 0 0 0 0
x27 Comoros 1 1 1 0 0 1
x28 Congo 1 1 0 0 0 1
x29 Costa Rica 1 0 0 0 0 0
x30 Cuba 1 1 0 0 0 0
x31 Djibouti 1 1 1 0 0 1
x32 Dominica 1 1 0 0 0 1
x33 Dominican Rep. 1 0 0 0 0 1
x34 Ecuador 1 1 0 0 1 0
x35 Egypt 1 1 0 1 0 0
x36 El Salvador 1 0 0 1 0 0
x37 Equatorial Guinea 1 1 1 0 0 1
x38 Ethiopia 1 1 1 1 0 1
x39 Fiji 1 0 0 0 0 1
x40 Gabon 1 1 0 0 1 1
x41 Gambia 1 1 1 1 0 1
x42 Ghana 1 1 1 1 0 1
x43 Grenada 1 1 0 0 0 1
x44 Guatemala 1 0 0 1 0 0
x45 Guinea 1 1 1 1 0 1
x46 Guinea-Bissau 1 1 1 1 0 1
x47 Guyana 1 1 0 1 0 1
x48 Haiti 1 0 1 1 0 1
x49 Honduras 1 0 0 1 0 0
x50 India 1 1 0 1 0 0
x51 Indonesia 1 1 0 0 1 0
x52 Iran 1 1 0 0 1 0
x53 Iraq 1 1 0 0 1 0
x54 Ivory Coast 0 1 0 1 0 1
x55 Jamaica 1 1 0 0 0 1
x56 Jordan l 1 0 0 0 0
x57 Kenya 1 1 0 1 0 1
x58 Kiribati 0 0 1 0 0 1
x59 Korea-North 1 1 1 0 0 0
x60 Korea-South 1 0 0 0 0 0
x61 Kuwait 1 1 0 0 1 0
x62 Laos 1 1 1 1 0 0
x63 Lebanon 1 1 0 0 0 0
x64 Lesotho 1 1 1 1 0 1
x65 Liberia 1 1 0 0 0 1
x66 Libya 1 1 0 0 1 0
x67 Madagascar 1 1 1 1 0 1
x68 Malawi 1 1 1 0 0 1
x69 Malaysia 1 1 0 0 0 0

(continued on next page)
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Table 2 (Continued)

Countries Group of 77 Non-aligned LLDC MSAC OPEC ACP

x70 Maldives 1 1 1 0 0 0
x71 Mali 1 1 1 1 0 1
x72 Mauritania 1 1 1 1 0 1
x73 Mauritius 1 1 0 0 0 1
x74 Mexico 1 0 0 0 0 0
x75 Mongolia 0 0 1 0 0 0
x76 Morocco 1 1 0 0 0 0
x77 Mozambique 1 1 0 1 0 1
x78 Myanmar 1 0 1 1 0 0
x79 Namibia 1 0 0 0 0 1
x80 Nauru 0 0 0 0 0 0
x81 Nepal 1 1 1 1 0 0
x82 Nicaragua 1 1 0 0 0 0
x83 Niger 1 1 1 1 0 1
x84 Nigeria 1 1 0 0 1 1
x85 Oman 1 1 0 0 0 0
x86 Pakistan 1 1 0 1 0 0
x87 Panama 1 1 0 0 0 0
x88 Papua New Guinea 1 0 0 0 0 1
x89 Paraguay 1 0 0 0 0 0
x90 Peru 1 1 0 0 0 0
x91 Philippines 1 0 0 0 0 0
x92 Qatar 1 1 0 0 1 0
x93 Reunion 0 0 0 0 0 0
x94 Rwanda 1 1 1 1 0 1
x95 Samoa 1 0 1 1 0 1
x96 Sao Tome e Principe 1 1 1 0 0 1
x97 Saudi Arabia 1 1 0 0 1 0
x98 Senegal 1 1 0 1 0 1
x99 Seychelles 1 1 0 0 0 1
x100 Sierra Leone 1 1 1 1 0 1
x101 Singapore 1 1 0 0 0 0
x102 Solomon Islands 1 0 0 0 0 1
x103 Somalia 1 1 1 1 0 1
x104 Sri Lanka 1 1 0 1 0 0
x105 St Kitts 0 0 0 0 0 0
x106 St Lucia 1 1 0 0 0 1
x107 St Vincent Grenada 1 0 0 0 0 1
x108 Sudan 1 1 1 1 0 1
x109 Surinam 1 1 0 0 0 1
x110 Swaziland 1 1 0 0 0 1
x111 Syria 1 1 0 0 0 0
x112 Tanzania 1 1 1 1 0 1
x113 Thailand 1 0 0 0 0 0
x114 Togo 1 1 1 0 0 1
x115 Tonga 1 0 0 0 0 1
x116 Trinidad and Tobago 1 1 0 0 0 1
x117 Tunisia 1 1 0 0 0 0
x118 Tuvalu 0 0 1 0 0 1
x119 Uganda 1 1 1 1 0 1
x120 United Arab Emirates 1 1 0 0 1 0
x121 Uruguay 1 0 0 0 0 0
x122 Vanuatu 1 1 1 0 0 1
x123 Venezuela 1 1 0 0 1 0
x124 Vietnam 1 1 1 0 0 0
x125 Yemen 1 1 1 1 0 0
x126 Zaire 1 1 1 0 0 1
x127 Zambia 1 1 1 0 0 1
x128 Zimbabwe 1 1 0 0 0 1

If the United Nations try to consider as many countries as possible, they may relax the conditions to some developing
countries. Now the sufficient information granule is a good choice. Let (X0, B0) be the initial information granule, then we
can compute the sufficient information granules of (X0, B0) by the above program as follows:

(X1, B1) ∈ G2, (X2, B2) ∈ G2,

where

X1 = {x1, x11, x14, x17, x18, x21, x22, x23, x27, x31, x35, x37, x38, x41, x42, x45, x46, x47, x52, x59, x64,

x67, x68, x71, x72, x78, x83, x84, x92, x94, x95, x96, x100, x103, x106, x108, x112, x114, x119, x122, x126, x127},
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B1 = {a1,a2,a3,a6},
X2 = U − {x16, x25, x58, x75, x80, x93, x105, x118},
B2 = {a1,a2,a3,a6}.

From the sufficient information granules (X1, B1) and (X2, B2), we can know that the countries X1, X2 only satisfy or
don’t satisfy the attributes B1 respectively.

If the United Nations hope that the selected countries must satisfy the given attributes and all the countries which satisfy
the given attributes must be selected. Now the sufficient and necessary information granule is a good choice. Thus, we can
compute the sufficient and necessary information granules of (X0, B0) by the above program as follows:

(X3, B3) ∈ G1 ∩ G2, (X4, B4) ∈ G1 ∩ G2,

where

X3 = {x11, x14, x17, x18, x21, x22, x23, x27, x31, x37, x38, x41, x42, x45, x46, x64, x67,

x68, x71, x72, x83, x94, x96, x100, x103, x108, x112, x114, x119, x122, x126, x127},
B3 = {a1,a2,a3,a6}.
X4 = U − {x16, x25, x58, x75, x80, x93, x105, x118}
B4 = {a1}.

From the sufficient and necessary information granules (X3, B3) and (X4, B4), we can know that the countries X3, X4
satisfy the given attributes B3, B4 and all the countries which satisfy the B3, B4 be selected respectively.

7. Conclusions

A key event in human cognitive processes is understanding the necessary and sufficient attributes of an object when get-
ting to know it. Once the sufficient and necessary attributes of the object are obtained, the object can be completely grasped.
However, the cognitive process is very complex. To describe the cognitive process, this paper constructed a novel model of
cognitive systems based on formal concept analysis. We proposed two operators between an object and its attributes. Nec-
essary information, sufficient information, and sufficient and necessary information granules were also presented. Moreover,
we showed an approach to transform arbitrary information granules into necessary information granules, sufficient infor-
mation granules, sufficient and necessary information granules. Finally, experiments were implemented to illustrate the
algorithm designed in this paper. In particular, the capability of the proposed method will be very useful in the analysis of
cognitive systems with big data.
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